This is one of the most comprehensive engineering blog posts on how Uber uses Machine Learning (ML) at scale. It covers:
- Uber’s ML Platform – Michael Angelo
 - Uber’s research and production efforts and how they inter-relate
 - How Uber achieves Model Developers Velocity
 
I made a list of few terms and concepts from the article:
- ML deployment use cases
 - Pervasive deployment of ML in several applications
 - Distributed training of ML
 - Aligning ML applications with Uber’s priorities
 - ML tools across the company (where and what)
 - Internal events like – ML conferences, ML reading groups, talk series
 - Data Science Workbench (a tool to build and iterate ML models)
 - ML Platform team and how they work to support ML development inside Uber
 - Technology stacks – Spark, Cassandra, Python and others
 - Experiments with external tools both open source and commercial
 - Uber’s open source contributions
 
It is nice to know how a dynamic company uses Machine Learning. There is a lot to learn from here. If you are thinking about building and deploying ML applications Scaling Machine Learning at Uber with Michelangelo | Uber Engineering Blog is a must read. I may go back and read it again.